Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiol Imaging Cancer ; 5(4): e230011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37449917

RESUMO

Adaptive radiation therapy is a feedback process by which imaging information acquired over the course of treatment, such as changes in patient anatomy, can be used to reoptimize the treatment plan, with the end goal of improving target coverage and reducing treatment toxicity. This review describes different types of adaptive radiation therapy and their clinical implementation with a focus on CT-guided online adaptive radiation therapy. Depending on local anatomic changes and clinical context, different anatomic sites and/or disease stages and presentations benefit from different adaptation strategies. Online adaptive radiation therapy, where images acquired in-room before each fraction are used to adjust the treatment plan while the patient remains on the treatment table, has emerged to address unpredictable anatomic changes between treatment fractions. Online treatment adaptation places unique pressures on the radiation therapy workflow, requiring high-quality daily imaging and rapid recontouring, replanning, plan review, and quality assurance. Generating a new plan with every fraction is resource intensive and time sensitive, emphasizing the need for workflow efficiency and clinical resource allocation. Cone-beam CT is widely used for image-guided radiation therapy, so implementing cone-beam CT-guided online adaptive radiation therapy can be easily integrated into the radiation therapy workflow and potentially allow for rapid imaging and replanning. The major challenge of this approach is the reduced image quality due to poor resolution, scatter, and artifacts. Keywords: Adaptive Radiation Therapy, Cone-Beam CT, Organs at Risk, Oncology © RSNA, 2023.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada de Feixe Cônico , Órgãos em Risco
2.
Pract Radiat Oncol ; 13(2): e184-e191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36539155

RESUMO

PURPOSE: Definitive radiation therapy (RT) for locally advanced node-positive cervical cancer confers significant toxicity to pelvic organs including the small bowel. Gross nodal disease exhibits significant shrinkage during RT, and yet conventional RT does not account for this change. We evaluated the reduction in absorbed bowel dose using various adaptive RT schedules. METHODS AND MATERIALS: We obtained 130 evaluable scans (computed tomography simulation and 25 cone beam computed tomography scans per patient) of 5 patients who had received definitive external beam RT for lymph node positive cervical cancer daily over 5 weeks. Using a single universal volumetric modulated arc therapy plan with predefined optimization priorities, we created adapted RT plans in 4 schedules: Daily, Weekly, Twice, and NoAdapt (mimicking conventional nonadapted RT). The in silico (computer modeled) patients were treated to 45 Gy to primary cervical disease with a simultaneous integrated boost to 55 Gy to involved lymph nodes. We evaluated dose metrics including D2cc, D15cc, and V45 to determine the impact of adapted RT schedules on bowel sparing. Statistical tests included the Student t test, analysis of variance, and the Spearman rank correlation. RESULTS: The quantity of reduced bowel dose was significantly associated with the chosen planning schedule in all evaluated metrics and was proportional to the frequency of adaptive RT with significant moderate-to-strong monotonicity. Both D2cc and D15cc were reduced an average of 2.7 Gy using daily replanning compared with a nonadapted approach. A minimally adapted strategy of only 2 replans also confers a significant dosimetric benefit over a nonadapted approach. Reduced standard deviations of D2cc and V45 bowel doses over the treatment courses were significantly associated with the choice of planning schedule with strong monotonicity. CONCLUSIONS: All adaptive RT schedules evaluated confer significant dosimetric advantages in bowel sparing over a conventional nonadapted technique, with greater sparing seen with more frequent replanning schedules. These findings warrant future trials of adaptive RT for pelvic malignancies.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
3.
BMC Cancer ; 22(1): 1095, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289477

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with overall survival remaining poor despite ongoing efforts to explore new treatment paradigms. Given these outcomes, efforts have been made to shorten treatment time. Recent data report on the safety of CyberKnife (CK) fractionated stereotactic radiosurgery (SRS) in the management of GBM using a five-fraction regimen. The latest Gamma Knife (GK) model also supports frameless SRS, and outcomes using GK SRS in the management of primary GBM have not yet been reported. OBJECTIVE: To report on the feasibility of five-fraction SRS with the GammaKnife ICON in the management of newly diagnosed GBM. METHODS: In this single institutional study, we retrospectively reviewed all patients from our medical center from January 2017 through December 2021 who received fractionated SRS with Gamma Knife ICON for newly diagnosed GBM. Patient demographics, upfront surgical margins, molecular subtyping, radiation treatment volumes, systemic therapies, and follow-up imaging findings were extracted to report on oncologic outcomes. RESULTS: We identified six patients treated within the above time frame. Median age at diagnosis was 73.5 years, 66% were male, and had a median Karnofsky Performance Status (KPS) of 70. All tumors were IDH wild-type, and all but one were MGMT methylated and received concurrent temozolomide (TMZ). Within this group, progression free survival was comparable to that of historical data without significant radiation-induced toxicities. CONCLUSION: Gamma Knife ICON may be discussed as a potential treatment option for select GBM patients and warrants further investigation in the prospective setting.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Lesões por Radiação , Radiocirurgia , Adulto , Humanos , Masculino , Feminino , Glioblastoma/patologia , Radiocirurgia/métodos , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Estudos Prospectivos , Temozolomida/uso terapêutico , Estudos de Viabilidade , Lesões por Radiação/etiologia , Resultado do Tratamento
4.
Med Phys ; 46(10): 4333-4339, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359438

RESUMO

PURPOSE: Cone beam computed tomography (CBCT) imaging has been implemented on the Leksell Gamma Knife® Icon™ for assessing patient positioning in mask-based Gamma Knife radiosurgery. The purpose of this study was to evaluate the performance of the CBCT-based patient positioning system as a tool for frameless Gamma Knife radiosurgery. METHODS: Daily quality assurance (QA) CBCT precision test results from a 12-month period were analyzed for the geometric accuracy and the stability of the imager. The performance of the image acquisition module and the image registration algorithm was evaluated using an anthropomorphic head phantom (CIRS Inc., Norfolk, VA) and a XYZR axis manual positioning stage (TOAUTO Inc., Guangdong, China). The head phantom was fixed on a mask adaptor and manually translated in the X, Y, Z directions or rotated around the X, Y, Z axes in the range of ±10 mm or ±10º. A CBCT scan was performed after each manual position setup followed by an image registration to the reference scan. To assess the overall setup uncertainties in fractionated treatment, two cylindrical Presage phantoms (Heuris Inc., Skillman, NJ) of 15 cm diameter and 10 cm height were irradiated with identical prescription dose and shot placement following standard mask-based treatment workflow according to two different fraction schedules: a single fraction treatment of 7.5 Gy and a 5-fraction treatment with 1.5 Gy per fraction. RESULTS: The averaged vector deviations of the four marks from their preset values are 0.087, 0.085, 0.095, and 0.079 mm from the 212 daily QA tests. The averaged displacements in the X, Y, Z coordinates and the pitch, yaw, roll angles from the image registration tests are 0.23, 0.27, 0.14, 0.32º, 0.19º, 0.31º from the manual setup. The corresponding maximum differences are 0.41, 0.33, 0.29 mm, 0.45º, 0.31º, and 0.43º, respectively. Compared to the treatment plan using the 2% & 1 mm criteria, the averaged 2D Gamma passing rate is 98.25% for the measured dose distribution from the Presage phantom with 1-fraction irradiation and 95.12% for the 5-fraction irradiation. The averaged Gamma passing rates are 99.53% and 98.16% for the 1-fraction and 5-fraction irradiations using the 2% & 2 mm criteria. CONCLUSIONS: The CBCT imager and the image registration algorithm can reproduce phantom position with <0.5 mm/0.5º uncertainty. A systematic contribution from the interfraction phantom repositioning procedure was observed in the Gamma analysis over the irradiated volumes of two end-to-end test phantoms.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Posicionamento do Paciente/métodos , Radiocirurgia , Humanos , Processamento de Imagem Assistida por Computador , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...